Lesson 11. Graphical Solution of Linear Programs

0 Warm up

Example 1.

a. On the axes on page 2, draw the following equations, and label the points of intersection.

$$
\begin{aligned}
& 4 C+2 V=32 \\
& 4 C+6 V=48
\end{aligned}
$$

b. On the same axes, draw the equation $3 C+4 V=18$. Suppose you change 18 to another value. How would your answer change?

1 Overview

- Previously, we formulated a linear program for Farmer Jones's problem:

$$
\begin{aligned}
& C=\text { number of chocolate cakes to bake } \\
& V=\text { number of vanilla cakes to bake }
\end{aligned}
$$

maximize	$3 C+4 V$	(total profit)
subject to	$4 C+2 V \leq 32$	(eggs used vs. available)
	$4 C+6 V \leq 48$	(flour used vs. available)
	$C \geq 0$	(nonnegativity)
	$V \geq 0$	(nonnegativity)

- By trial-and-error, the best feasible solution we found was $C=6, V=4$ with value 34
- Let's find an optimal solution and the optimal value to Farmer Jones's model in a systematic way

2 Solving Farmer Jones's model graphically

- We can graphically solve linear programs with 2 variables
- The feasible region - the collection of all feasible solutions - for Farmer Jones's optimization model:

- Any point in this shaded region represents a feasible solution
- How do we find the one with the highest value?
- $C=6, V=0$ is a feasible solution with value $\quad 3(6)+4(0)=18$
- The set of (C, V) with value 18 satisfies:

$$
3 C+4 V=18
$$

- The set of feasible solutions with a value of 18 is graphically represented by:

$$
\begin{aligned}
& \text { the intersection of the line } 3 C+4 V=18 \\
& \text { with the feasible region. }
\end{aligned}
$$

- Idea:
- Draw lines of the form $3 C+4 V=k$ for different values of k
- Find the largest value of k such that the line $3 C+4 V=k$ intersects the feasible region
- These lines are called contour plots
- Lines through points having equal objective function value

3 Sensitivity analysis

- For what profit margins on vanilla cakes will the current optimal solution remain optimal?

- Key observation:

The slope of the objective function contour must be "between" the slopes of (1) and (2)

- Slope of $(1)=-2$, slope of $(2)=\square-\frac{2}{3}$
- Let a be the new profit margin on vanilla cakes
\Rightarrow objective function is $\quad 3 C+a V$, slope of contour plots $=\quad-\frac{3}{a}$
\Rightarrow If $\quad-2 \leq-\frac{3}{a} \leq-\frac{2}{3}$, then the current optimal solution remains optimal

4 Outcomes of optimization models

- An optimization model may:

1. have a unique optimal solution

- e.g. the original Farmer Jones model

2. have multiple optimal solutions

- e.g. What if the profit margin on chocolate and vanilla cakes is $\$ 2$ and $\$ 3$, respectively, instead?
- Farmer Jones's objective function is then

3. be infeasible: no choice of decision variables satisfies all constraints

- e.g. What if the demands of Farmer Jones's neighbors dictate that he needs to bake at least 9 chocolate cakes?
- Then we need to add the constraint
$c \geqslant 9$

4. be unbounded: for any feasible solution, there exists another feasible solution with a better value

- e.g. What if the circumstances have changed so that the feasible region of Farmer Jones's model actually looks like this:

5 Next...

- How can we solve linear programs with more than 2 variables?
- Algorithm design
- Improving search and the simplex method

